

An Empirical Review of Uncertainty Estimation for Quality Control in CAD Model Segmentation

Gerico Vidanes, David Toal, Andy Keane, Daniel Xu Zhang, Marco Nunez, Jon Gregory

26 June 2025

Overview

- Context
- Background
- Practical Uncertainty Estimation Methods
- Evaluation Method
- Results
- Conclusions

Context

Quality control and confidence of CAD model segmentations

- Semantic segmentation of CAD models enables wide range of automations.
 - CAD to CAM
 - CAD to Simulation

- General feature recognition on geometries is widely useful in engineering for automated decision making and processing.
- Modern NN approaches can achieve high accuracy but not perfect. A signal for uncertainty useful for:
 - Flagging potentially incorrect predictions.
 - Unfamiliar inputs

Background

B-Rep CAD model segmentation with neural networks

- B-rep CAD models ~= collection of surface patches.
- Using point-based NN [1].
 - Outputs a vector for each b-rep face.
 - Softmax as probability? This is the baseline: $\max_{j} \left(\frac{e^{z}}{\sum_{i} e^{z_{j}}} \right)$

- Adam optimizer
- Cross entropy loss
- 'Best' model from lowest loss on validation set.

[1] Vidanes, G., et al. CAD (2024) - Extending Point-Based Deep Learning Approaches for Better Semantic Segmentation in CAD

Practical Uncertainty Estimation Methods

- Post-processing calibration
 - Temperature scaling [1]
 - Histogram binning [2]

[1] Guo, C., et al. ICML (2017) - On Calibration of Modern Neural Networks

[2] Zadrozny, B. and Elkan, C. ICML (2001) - Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers

Practical Uncertainty Estimation Methods

- Post-processing calibration
 - Temperature scaling
 - Histogram binning
- Model stochasticity
 - Deep Ensemble [1]
 - MC Dropout [2]

Practical Uncertainty Estimation Methods

- Post-processing calibration
 - Temperature scaling
 - Histogram binning
- Model stochasticity
 - Deep Ensemble
 - MC Dropout
- Input data augmentation
 - Point resampling

- Quality control scenario adapted from [3]
 - Predictions ranked from most uncertain to least uncertain.
 - N predictions flagged for correction. Remaining error is measured.

 ^[1] Colligan, A., et al. CAD (2022) - Hierarchical cadnet: Learning from b-reps for machining feature recognition
[2] Lambourne, J.G., et al. CVPR (2021) - Brepnet: A topological message passing system for solid models
[3] Ng, M., et al. IEEE Trans. Biomed Eng. (2023) - Estimating Uncertainty in Neural Networks for Cardiac MRI Segmentation: A Benchmark Study

Results

- Human-in-the-loop error, given manual correction budget.
 - Summarized by area-under-thecurve.
 - Lower is better
- Different error rates at 0% manually corrected.
 - Aggregation approaches can improve accuracy!

Results

- Human-in-the-loop error, given manual correction budget.
 - Summarized by area-under-the-curve.
 - Lower is better
- Deep Ensemble particularly good at limited training data case!

Trade-offs More calibrated uncertainty Baseline Histogram Binning MC Dropout **Resampling & Dropout Deep Ensemble** Temp. Scaling Resampling Less computational cost (inference only) **Deep Ensemble** MC Dropout Resampling Histogram Binning Baseline **Resampling & Dropout** Temp. Scaling Less computational cost (total) **MC Dropout** Temp. Scaling Histogram Binning **Deep Ensemble** Baseline **Resampling & Dropout** Resampling

g.vidanes@soton.ac.uk

Conclusions

- For this setting, uncertainty estimation techniques tested are similarly good. Baseline is not as bad as expected!
- Relatively simple approaches are 'sufficient' for this point-based GNN for CAD segmentation.
- Human-in-the-loop approach validated for CAD segmentation. A signal is obtained which can rank predictions from most likely to least likely to be incorrect.
 - Opens up other uses for uncertainty...

An Empirical Review of Uncertainty Estimation for Quality Control in CAD Model Segmentation

Gerico Vidanes¹, David Toal¹, Andy Keane¹, Daniel Xu Zhang², Marco Nunez³, and Jon Gregory³

University of Southampton, UK ² Falmouth University, UK ³ Rolls Royce plc., UK Thanks to Rolls-Royce plc. for funding this work

YOUR QUESTIONS

g.vidanes@soton.ac.uk

More Results

Correlation of uncertainty with predictive accuracy

- Measured using conditional probabilities from [1].
- 1. p(accurate|certain): The probability that the model is accurate on its output given that it is confident on the same.
- 2. p(uncertain|inaccurate): The probability that the model is uncertain about its output given that it has made a mistake in its prediction (i.e., is inaccurate).

- Relevant frequencies/counts:
 - n_{ac} accurate and certain, n_{au} accurate and uncertain
 - n_{ic} inaccurate and certain, n_{iu} inaccurate and uncertain

$$\mathbb{P}(\text{accurate}|\text{certain}) = \frac{n_{ac}}{n_{ac} + n_{ic}}$$

$$\mathbb{P}(\text{uncertain}|\text{inaccurate}) = \frac{n_{iu}}{n_{ic} + n_{iu}}$$

$$PAvPU = \frac{n_{ac} + n_{iu}}{n_{ac} + n + au + n_{ic} + n_{iu}}.$$

[1] Mukhoti, J. and Gal, Y. arXiv (2018) - Evaluating bayesian deep learning methods for semantic segmentation

More Results

- Mean value of conditional probabilities using different uncertainty thresholds.
 - Higher is better.
- Similar trends as before.
 - But shows that using the uncertainty from Deep Ensemble gives lower recall (but more precise) filter.

