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Abstract. Deep neural networks are able to achieve high accuracy in
semantic segmentation of geometries used in computational engineering.
Being able to recognise abstract and sometimes hard to describe geomet-
ric features has applications for automated simulation, model simplifica-
tion, structural failure analysis, meshing, and additive manufacturing.
However, for these systems to be integrated into engineering workflows,
they must provide some measures of predictive uncertainty such that
engineers can reason about and trust their outputs. This work presents
an empirical study of practical uncertainty estimation techniques that
can be used with pre-trained neural networks for the task of boundary-
representation model segmentation. A point-based graph neural network
is used as a base. Monte-Carlo Dropout (MCD), Deep Ensembles, test-
time input augmentation, and post-processing calibration are evaluated
for segmentation quality control. The Deep Ensemble technique is found
to be top performing and the error of a human-in-the-loop system across
a dataset can be reduced from 3.8% to 0.7% for MFCAD++ and from
16% to 11% for Fusion360 Gallery when 10% of the most uncertain pre-
dictions are flagged for manual correction. Models trained on only 5%
of the MFCAD++ dataset were also tested, with the uncertainty es-
timation technique reducing the error from 9.4% to 4.3% with 10% of
predictions flagged. Additionally, a point-based input augmentation is
presented; which, when combined with MCD, is competitive with the
Deep Ensemble while having lower computational requirements.

Keywords: Neural Networks · Uncertainty · Point-Cloud · Computer-
Aided Design · Semantic Segmentation · Feature Recognition.

1 Introduction

Feature recognition (or semantic segmentation) of engineering geometry is a
widely useful capability. One of the first applications of this was for the auto-
mated transition between computer-aided design (CAD) models and computer-
aided manufacturing and process planning[23]. Later, feature recognition was
⋆ Supported by Rolls-Royce plc.
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also used for automated analysis; where detected features are used to aid in down-
stream meshing, simulation, and post-processing[33]. With the development and
wider use of geometric deep learning within computational engineering[15,2,11]
[32,27], the recognised features could be more complex and abstract. This opens
the door to future use cases like detecting structural failure or features which
cause problems in meshing or additive manufacturing.

While the development of the underlying predictive models - neural networks
(NN) - is proceeding rapidly in the literature, consideration for how these can
be properly integrated into the engineering workflow is lacking. Despite being
highly accurate and flexible, these models are not perfect. Coupled with their
end-to-end nature, the basic system simply presents the engineer with a dense
set of semantic segmentation predictions with varying correctness. Taking these
at face value, errors in recognised features can, for example, lead to errors in the
analysis models being built from these tags. In the best case this can cause sim-
ulations to fail, and in the worst case can be silent errors which give misleading
simulation results. This is exacerbated when an input geometry is outside their
training distribution. In contrast, traditional or algorithmic feature recognition
approaches give engineers some confidence in their outputs. Unfamiliar inputs
tend to produce runtime errors or simply produce blank labels which can be
easily caught downstream.

To combat this and to move towards more robust and useable deep learning
systems for engineering workflows, the current work studies NN uncertainty es-
timation techniques in so far as they can be used to make decisions about NN
outputs. Essentially, an uncertainty (or confidence) value can be given to each
NN prediction such that it is correlated to the likelihood of its correctness. Pre-
dictions that are very uncertain are then likely to be incorrect and thus can be
discarded or flagged to the engineer for correction. Work on this area has been
increasing, but as the survey in [7] has identified, the literature is lacking on the
validation of existing methods over real-world problems, especially for the 3D
domain.

To the best of the authors’ knowledge, this is the first application of uncer-
tainty / confidence estimation techniques to NNs for 3D CAD segmentation or
processing in general. Therefore, an empirical review of practical techniques is
presented and the implications to engineering workflows is discussed in detail.
This work is placed as an initial exploration of the space to be used as a starting
point for further detailed research. Additionally, a novel test-time augmentation
which involves repeated stochastic encoding of the 3D CAD model into a point
cloud is presented as an uncertainty estimation technique.

2 Related Work

Much work has been done on uncertainty quantification for NNs in general - for a
recent review see [7]. Works which use convolutional neural networks (CNN) for
computer vision are relevant to this work. One of the first was in [12], which ap-
plied Monte-Carlo Dropout (MCD)[6] to a CNN - however, only improvements in
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semantic segmentation accuracy were evaluated and per-pixel uncertainty masks
were only for qualitative analysis. Filling this gap, [17] presents metrics for eval-
uating uncertainty estimation techniques in terms of how well they (inversely)
correlate with segmentation accuracy. Another important practical technique is
the Deep Ensemble[14]. The referenced work presents the accuracy of predic-
tions whose uncertainties pass a range of confidence thresholds, and show that
the uncertainties estimated by the Ensemble technique is better than MCD.

More recently, work has been done on uncertainty estimation for NNs with
3D unstructured inputs, namely point clouds. [26] uses a point-based NN as a
base and compared the standard probability output with MCD and variational
inference via parameter sampling. However, segmentation accuracy and calibra-
tion error are evaluated which is not directly relevant to this work. [19] also
compared standard probability with MCD and variational inference. Relevant
here is that they evaluate the accuracy of the predictions which pass an uncer-
tainty threshold, similar to the filtering application in the current work. While
these are important first steps into practical uncertainty estimation in the 3D
domain, the range of techniques validated is lacking.

The work in [8] compared different post-processing calibration methods.
These aim to transform the output of the NN such that it better reflects the
confidence of the prediction. The simple temperature scaling technique was pro-
posed and was shown to be the best across many datasets. Calibration and its
evaluation is not directly relevant in this work but some of these methods will
be tested for completeness.

Finally, the most relevant work is the recent, large-scale, empirical review
on a real use case by [18]. They compare Bayes by Backprop[1], MCD, Deep
Ensemble, and Stochastic Segmentation Networks[16] as uncertainty estimation
techniques for the quality control of NN medical image segmentation. They show
that the Deep Ensemble is best. The current work aims to perform a similar
empirical review on a range of techniques but for the 3D CAD application.

3 Background

3D feature recognition with deep learning is a wide field due to the different
representations available and the diverse applications. There exists approaches
for 3D data encoded as voxels[34,30], triangular surface meshes[9], and point
clouds[25,22]. On the other hand, the current work is focused on CAD where
geometry tends to be encoded as boundary representation (b-rep) models - a
3D shape is described by its bounding 2D surface. The surface is described
by a parametric function x : U ∈ R2 → R3 [20]. For non-trivial shapes, their
bounding surfaces cannot be described by one parameterisation; therefore, they
are composed of many patches or ‘b-rep faces’ (portions of the domain) with
each face bounded by edges which are themselves parametric curves.

A b-rep model is a complex data structure, but approaches have been pro-
posed for processing these with NNs. The b-rep face topology can be treated as a
graph and processed with graph convolution[2,11,15]. Alternatively, the surfaces
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can be encoded as point clouds while still preserving information from the b-rep
model[32,27].

Regardless of the specific approach and 3D encoding used, the overall process
of feature recognition when using NNs is the same. In this work, similar to those
above, feature recognition is formulated as semantic segmentation of the input.
This process involves classifying each elementary entity - voxels, pixels, mesh
faces, points, or b-rep faces - into a category. This prediction takes the form of a
score per category or logits - z ∈ RK , where K is the number of classes. Therefore,
the NN forward pass or inference can be formalised as fθ : X ∈ RN ×RD → Z ∈
RN ×RK ; where fθ is the NN parameterised with weights θ, X is a description
of the input as a set of vectors, and Z is the output giving each of the N entities
a logit vector. As an example, X for a b-rep model could be the set of N b-rep
faces each described by D attributes. The argmax within each logit vector then
gives the index corresponding to the predicted category.

The current work builds on the NN approach in [27]. This relatively simple
approach is shown to be competitive with those which directly use the b-rep
data. For this, the b-rep model is first encoded into an extended point cloud
representation that retains its links with the b-rep faces - P ∈ RN × R3+D,
where D is the extra information other than the 3D coordinates and N becomes
the number of points. The NN forward pass then becomes fθ : P ∈ RN×R3+D →
Z ∈ RF×RK ; where F is the number of b-rep faces. Noting that the output shape
is (F × K) since the network aggregates the point features to their associated
b-rep faces to produce direct and differentiable b-rep face predictions.

While label predictions can be simply obtained from the logit vector outputs
of the NN, it is often useful to transform this into a vector giving the probability
that the entity belongs to each category. This can be done with the softmax
function that normalises the input into a vector which sums to one: σSM (z)i =

ezi∑K
j=1 ezj

. The ‘probability’ of the entity belonging to the predicted class is then

q = maxk σSM (z).

However, literature suggests that this normalised vector should not be in-
terpreted probabilistically as it tends to be uncalibrated and overconfident[8,5],
especially for new inputs which are not within the training distribution. There-
fore, much work has been done on proper NN uncertainty estimation[7]. Put
simply, these techniques aim to provide a score for each prediction which cap-
tures the uncertainty within the input data, or the model parameters, or both.
With this, one can make decisions about the quality of the NN predictions for a
given input.

This work chooses to review techniques which require little to no modifica-
tion of the network architecture and no changes in the training scheme. These
could be applied to pre-trained models that engineers already have. Four broad
categories of approaches which implement different conceptual representations
of uncertainty and represent a range of computational costs are reviewed. These
are approximate Bayesian inference (MCD [6]), test-time input augmentation,
model ensembling, and post-processing calibration.
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4 Uncertainty Estimation

4.1 Post-Processing Calibration

There are methods which aim to transform the outputs of a trained model using
a known calibration dataset such that the new probability vectors are well cali-
brated. Perfect calibration can be defined as P(Ŷ = Y | P̂ = p) = p, ∀p ∈ [0, 1]
where Ŷ is the predicted class, Y is the true class, P̂ is the predicted probability
or predictive confidence, and p is the true (frequentist) probability[4,3]. It is un-
common for works on segmentation quality control to include these approaches,
but they have been represented here with the reasoning that calibrated prob-
ability outputs are more useful in picking out incorrect predictions for quality
control. Two methods are used and explained in the following.

Temperature scaling[8] is a simplified multi-class version of the Platt scaling
method[21] for calibrating NN probability predictions that only tunes one pa-
rameter, τ4. The predictive confidence is then q̂ = maxk σSM (z/τ)(k). The logits
from the calibration set geometries are used to tune the temperature scaling pa-
rameter by minimising the negative log likelihood loss between q̂ and the ‘true’
probability vector (which is just the one-hot encoded class index).

Histogram binning ([31]) is a frequentist approach which bins the ‘predicted
scores’ from a calibration dataset. Given a new test example, it is placed into
one of the bins according to its (raw) score. The calibrated probability that this
new test example belongs to the predicted class is the fraction of calibration
examples in the same bin of the same predicted class which were correct. Here,
the maximum probability, q, was used as the ‘predicted scores’. 20 equal-width
bins for each calibration set was used.

4.2 Monte-Carlo Dropout

The dropout technique[24] randomly ‘drops’ neurons in a layer during training
for regularisation. This is nominally not done during ‘test-time’ but [6] shows
that using this produces stochastic forward passes which approximates the sam-
pling of weights for the variational inference of Bayesian NNs. A distribution
of vector outputs is obtained for a given input - fθt(P) = Zt, where t is the
t-th forward pass. This can then be collapsed to a prediction vector by simply
obtaining the element-wise mean after applying softmax to each. This vector is
treated similarly as that above - the argmax is the predicted class index and the
corresponding value is the confidence. Early works show that this aggregated
vector, with enough forward passes, is more accurate than basic inference. 50
stochastic forward passes were used here was found to be sufficient for converged
uncertainty estimates and resultant classification accuracy.

4 τ is used here instead of T from the original work to not confuse with the use of T
later in this paper.
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4.3 Test-Time Augmentation - Point Resampling

Another way to obtain a distribution of NN outputs given the same input is
to do test-time augmentation[29,28,7]. In the current work, the ‘raw’ input to
the system is a b-rep CAD model but the NN’s observation is a point cloud,
P, sampled from the surface. Therefore, a natural and effective data augmenta-
tion approach is to repeatedly sample P with the stratified stochastic sampling
method proposed in [27]. In other words, the network input is not simply trans-
formed to look slightly different but is actually a different instantiation of the
same fundamental geometry. For each forward pass, the points seen by the net-
work are different and have no formal correspondence; but these are aggregated
into relevant b-rep faces to give a distribution - fθ(Pt) = Zt. For details of the
point to face aggregation and the sampling, see [27]. Similarly to the above, the
distribution can be aggregated into one prediction vector per face. 50 stochastic
forward passes were also used and was sufficient for convergence.

4.4 Resampling & Dropout

This work also presents a combined method with only a small computation
overhead when compared to the individual components. The point resampling
test-time augmentation and MCD inference can be used simultaneously to pro-
duce a wider variety in the distribution of output logits given a single input and
trained NN. Each logit output is produced from a different point cloud (from
the same geometry) and with a different sample of network nodes being dropped
- fθt(Pt) = Zt. As above, 50 stochastic forward passes are used.

4.5 Deep Ensemble

An ensemble of neural networks[10] can also be used to obtain a distribution of
outputs given the same input. An ensemble of models with the same architecture
and trained with the same dataset is used[14]. The models are trained using dif-
ferent random initialisations (and different mini-batch sampling of the dataset)
and thus take a different trajectory through weight space. The outputs of each
separate neural network for a given input geometry can be treated as samples
from a distribution - fθm

(P) = Zm for model m - and aggregated as above. 10
models were used.

5 Method

5.1 Base Neural Network

The NN architecture used in this work is the point-based network from [27],
which is an extension of PointNet++[22]. In the interest of space, the reader is
referred to the original work for details. The architecture is illustrated as a block
diagram in Figure 1. The unscaled network described in their work was used for
computational efficiency - i.e. default depth and width resulting in 1.4M learnable
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Fig. 1: Block diagram of neural network architecture. The convolutional-type
point-based feature extractor is followed by a multi-head structure. MLP =
Multi-Layer Perceptron. EX = Encoder X. DX = Decoder X.

parameters. The ‘facewise’ prediction branch was included and the average of
the point and face loss was used for training. The multi-head structure shown
in Figure 1 is only to aid training as discussed in the original work; only the
face predictions from the facewise branch are used in the following. To take full
advantage of MCD inference, extra dropout layers with a dropout probability of
0.5 were added in the final encoder layer (E3 in Figure 1) and the first decoder
layer (D1 in Figure 1) - the optimal configuration suggested in [12].

The b-rep geometries were encoded into 7D point clouds - encoding 3D co-
ordinates, 3D surface normals, and a b-rep face index - using b-rep stratified
sampling[27] with at least 4096 points. The ADAM optimiser[13] was used with
a learning rate of 0.001 and the network weights corresponding to the minimum
cross-entropy loss in the validation set were extracted.

5.2 Experimental Framework

This empirical review includes many layers of stochasticity. It is well-known
that NN training is stochastic due to the random mini-batching, weight ini-
tialisation, and dropout layers. Moreover, this work is interested in estimating
the ‘real-world’ performance of the above methods. From this perspective, the
evaluation of trained NNs is also stochastic since the training, validation, and
testing datasets are samples from the underlying distribution being learned. Fi-
nally, some uncertainty estimation methods being reviewed here are inherently
stochastic. To maximise the reliability of the results, many repetitions and cross-
validations (CV) are needed to capture the variance in the performance metrics.

Multiple models are necessary for the Deep Ensemble approach, therefore 10
separate models were trained on the same training and validation data. For the
other approaches, the following was also repeated for each model with results
being aggregated to capture the variation in NN training. Resampling CV was
used with a separate set of 3000 unseen geometries to estimate the unbiased
performance of the methods - i.e. not tied to the specific dataset splits. For each
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CV run, 1000 geometries were randomly sampled from this pool and used to
compute the performance metrics, with the remaining 2000 geometries being
used as a calibration set where required. 20 CV runs were done. Finally, the
sampling of a set of stochastic forward passes and aggregation was repeated
100 times. While the estimates are converged with T = 50, in the sense that it
remains stable with increasing T , there is still some variation in the result when
sampling a different set of 50 stochastic NN outputs.

This work uses two publicly available datasets of 3D CAD geometries with
semantic segmentation labels for evaluation. First is MFCAD++[2], an algorith-
mically generated dataset where each b-rep face in the model is labelled with
the manufacturing operation which created it. There are a total of 25 classes.
They provide lists of geometries for the training, validation, and test splits with
41766, 8950, and 8949 geometries respectively. The entire training and validation
split was used for NN parameter tuning and early stopping. The number of faces
per geometry is approximately normally distributed with a mean of 30, ranging
between 6 and 86. Second is the Fusion360 Gallery Segmentation Dataset [15]
- a collection of user submitted geometries with faces labelled according to the
CAD modelling operation which created it. The public release only provides a
list of geometries for the train and test split with 30314 and 5366 geometries
respectively. In the current work, the provided ‘training’ geometries were ran-
domly split with a 85/15 ratio for training and validation. The mean number
of faces per geometry is around 15, but the distribution is dramatically skewed
with a range from 1 to 421. For both datasets, 3000 geometries from each test
set are used for evaluation of the uncertainty estimation methods.

6 Results

First, the approaches are evaluated using the metrics from [17]. The P (accurate |
certain) and P (uncertain | inaccurate) conditional probabilities were proposed
and can be computed respectively as: of those predictions deemed ‘certain’ what
fraction were correct, and of those predictions which were incorrect what frac-
tion were deemed ‘uncertain’. [17] also combine these metrics into the ‘PAvPU’
metric. It can be computed as the fraction of all predictions which are either cor-
rect and ‘certain’, or incorrect and ‘uncertain’. Therefore, it can be interpreted
as the correlation between the uncertainty estimate and predictive accuracy -
i.e. a value of 1.0 means that all accurate predictions are ‘certain’, and all in-
correct predictions are ‘uncertain’ with no overlap. Naturally, these rely on the
definition of ‘certainty’ which here, and in most of the literature, is provided by
a confidence threshold. In the following, curves are produced to cover the range
of confidence threshold values and the area-under-the-curve (AUC) is used as
the summary metric for ranking methods.

Notice that the P (accurate | certain) values of different methods at a con-
fidence threshold of zero (i.e. all predictions pass the threshold) are different.
This corresponds to the base accuracy of the predictions. As expected, the post-
processing calibration methods have the same value as the baseline here since
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MFCAD++ MFCAD++ (5%) Fusion360 Gallery

Fig. 2: Metrics vs confidence threshold for different uncertainty estimation tech-
niques evaluated on different datasets. The mean line is shown with ±2 standard
errors as bounds. AUC format: mean (std.) - higher is better.

these do not change the prediction. On the other hand, the methods which ag-
gregate different predictions can have a different argmax value than a specific
individual forward pass, and literature shows that this can improve predictive
accuracy which is reflected here. Note that because of this, the random case
depends on the set of predictions being used; here, data corresponding to the
method giving the best AUC is drawn on Figure 2.

It is interesting that the Deep Ensemble method is the best performing for
both conditional probabilities across all three test cases but is one of the worst
when looking at the PAvPU metric. This is due to the number of predictions
which are accurate but uncertain - not accounted for in either of the given
conditional probabilities but is accounted for in the PAvPU calculation. The
ensemble method was found to be the worst in this case, suggesting that the
high precision ‘certainty filter’ is partly due to a stricter or lower recall filter.

Finally, note the flat portions of most techniques towards lower confidence
thresholds; suggesting that the majority of estimated confidences produced are
high. This could align with the idea in the literature that NN probabilities are
generally overconfident. However, it is also worth noting that the evaluation ge-
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ometries should be within the training distribution of the models - the datasets
are split randomly therefore they are from the same underlying distribution. In-
tuitively, the minimum confidence of the models given these geometries would
not be 0 because of this. Histogram binning stands apart from the rest as hav-
ing continuously varying results across the thresholds - owing to its particular
calibration method. Instead of using transformations or aggregations of the NN
outputs, the confidences are empirically obtained from ratios in the calibration
set. It is observed from Figure 2 that it performs very well because of this as
measured by the PAvPU metric.

Recalling the application of interest for this work, ranking methods with
these metrics alone is insufficient. As suggested by the x-axes in Figure 2, these
measure the calibration of the confidence estimates across the whole range of
probabilities. While calibration is important, it is not the focus of the application
of interest for this work. More directly relevant and easier to interpret metrics
are presented and discussed in the following.

(a) MFCAD++ (b) MFCAD++ (5%)

(c) Fusion360 Gallery

Fig. 3: Error rate after flagging a fraction of predictions for ‘manual correction’.
The mean line is shown with ±2 standard errors as bounds. AUC format: mean
(std.) - lower is better. Best improved error rate given 20% of predictions are
flagged is also shown.
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The application of segmentation quality control is mainly concerned with a
scalar estimate which can be used to rank predictions such that correct and in-
correct ones are well separated. To this end, the metrics and evaluation context
introduced in [18] are presented. Put simply, the application involves flagging the
least confident outputs of the system for manual correction such that the over-
all output of the human-in-the-loop system is more accurate. This represents
a semi-automation case where the manual effort of a human expert is ideally
concentrated into the most difficult feature recognition cases whilst the system
automates those which the NN is confident in. Instead of comparing confidence
thresholds (which produces different fractional splits of the predictions depend-
ing on the method), the predictions for the faces in the sample of 1000 test
geometries are ordered in increasing confidence. A range of fractions are then
specified such that the least confident predictions are flagged for ‘manual correc-
tion’. For the experiments, this simply means that the predictions become correct
regardless of their value - emulating a perfect oracle. The error rate remaining,
after correction, for the faces in the test geometries can then be calculated. The
area-under-the-curve (AUC) is used as a summary metric.

Figure 3 summarises the results of this experiment across the different cases.
The results are computed and aggregated across individual runs as before. Two
extra cases are also shown for context. The dotted black line represents the
case where predictions are flagged for manual correction randomly, regardless of
their estimated confidence. The solid black line represents the ideal case where
incorrect predictions are always flagged first; therefore this line always crosses
the x-axis at the same value as it did for the y-axis intercept.

Immediately apparent is that all approaches are significantly better than
the random baseline and reduce the error of the collaborative, human-in-the-
loop system as a whole. Aligned with literature, the Deep Ensemble technique
outperforms MCD and all other methods for this ‘error remaining’ metric. It
also produces the best base predictive accuracy, before considering confidence
filtering. Interestingly, the histogram binning approach is sometimes competitive
with the aggregated inference methods. It is perhaps interesting future work to
combine this calibration approach with the stochastic inference based methods.

7 Discussion

Considering the Deep Ensemble’s significant increase in computation (and mem-
ory/storage) requirements, it is also worth noting that the proposed combined
stochastic inference method (point resampling and MCD) is the second best per-
forming for the ‘error remaining’ metric. This technique only requires one trained
model and the stochastic inferences can also be easily performed in parallel on a
GPU. However, it was found that there was significant variance in the predictive
accuracy across individual trained models. Therefore, there is an argument to
be made that multiple models should be trained in practice to find a ‘good one’.
Thus making the Deep Ensemble option more readily available and appealing.
Additionally, Figure 3b suggests that the Deep Ensemble technique is signifi-
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cantly better than all other methods in the case where only a small amount of
data is used/available for training.

An interesting observation from these results is that the standard predictive
confidence obtained from the softmax of the basic NN forward pass is not as mis-
calibrated as is often suggested by the literature. In the results of this work, it
is not significantly worse than the extra uncertainty estimation methods. Look-
ing at the factors that cause ‘modern neural networks’ to be uncalibrated and
overconfident proposed in [8] - some of these do not apply to the networks used
here. For instance, they observe that NNs can overfit to negative log likelihood
loss without overfitting to the 0/1 predictive accuracy loss; therefore NNs with
weights extracted at the minimum of the latter can have miscalibrated probabil-
ity outputs. Here, cross entropy loss (directly correlated to NLL loss) was used
as the early stopping criteria here instead of predictive accuracy. They also state
that miscalibration grows substantially with model capacity (i.e. number of pa-
rameters); the NNs here are small compared to most used in the state-of-the-art.

8 Conclusions

The authors present this work mainly as a first exploration and validation of
the application of uncertainty estimation techniques to feature recognition in
CAD, specifically using point-based neural networks. A number of techniques
were applied and compared to two 3D CAD geometry datasets with different
semantics. All approaches were shown to filter incorrect predictions much better
than random. Reinforcing results from literature, the Deep Ensemble technique
produces the best uncertainty estimates in this setting. It also gives the best base
predictive accuracy. However, it is worth noting that the other methods are not
significantly worse for the large dataset cases, while having relatively moderate
computation cost. It is shown that practical and relatively simple techniques
for uncertainty estimation are effective at segmentation quality control. In other
words, the estimated uncertainty scalars are such that if a prediction is less
uncertain than another one it is more likely to be correct. Therefore, the uncer-
tainty estimates could be used in a human-in-the-loop approach to dramatically
decrease error rates given moderate manual effort. It is hoped that this work
can be used as a base for tackling real case studies and helps the adoption of
predictive deep learning methods into the engineering workflow.
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